Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Mol Omics ; 19(7): 585-597, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37345535

ABSTRACT

Photochemical internalization (PCI) is a promising new technology for site-specific drug delivery, developed from photodynamic therapy (PDT). In PCI, light-induced activation of a photosensitizer trapped inside endosomes together with e.g. chemotherapeutics, nucleic acids or immunotoxins, allows cytosolic delivery and enhanced local therapeutic effect. Here we have evaluated the photosensitizer meso-tetraphenyl chlorine disulphonate (TPCS2a/fimaporfin) in a proteome analysis of AY-27 rat bladder cancer cells in combination with the chemotherapeutic drug bleomycin (BML). We find that BLMPCI attenuates oxidative stress responses induced by BLM alone, while concomitantly increasing transcriptional repression and DNA damage responses. BLMPCI also mediates downregulation of bleomycin hydrolase (Blmh), which is responsible for cellular degradation of BLM, as well as several factors known to be involved in fibrotic responses. PCI-mediated delivery might thus allow reduced dosage of BLM and alleviate unwanted side effects from treatment, including pulmonary fibrosis.


Subject(s)
Bleomycin , Photochemistry , Proteomics , Urinary Bladder Neoplasms , Bleomycin/pharmacology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Cell Survival/drug effects , DNA Damage/drug effects , Transcription, Genetic/drug effects , Tumor Suppressor Proteins/metabolism , Down-Regulation/drug effects , Animals , Rats , Cell Line, Tumor , Stress, Physiological/drug effects , Stress, Physiological/genetics
2.
Oncologist ; 27(6): 430-e433, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35675633

ABSTRACT

BACKGROUND: Photochemical internalization (PCI) is a novel technology for light-induced enhancement of the local therapeutic effect of cancer drugs, utilizing a specially designed photosensitizing molecule (fimaporfin). The photosensitizing molecules are trapped in endosomes along with macromolecules or drugs. Photoactivation of fimaporfin disrupts the endosomal membranes so that drug molecules are released from endosomes inside cells and can reach their therapeutic target in the cell cytosol or nucleus. Compared with photodynamic therapy, the main cytotoxic effect with PCI is disruption of the endosomal membrane resulting in delivery of chemotherapy drug, and not to the photochemical reactions per se. In this study we investigated the effect of PCI with gemcitabine in patients with inoperable perihilar cholangiocarcinoma (CCA). METHODS: The in vitro cytotoxic effect of PCI with gemcitabine was studied on two CCA-derived cell lines. In a fimaporfin dose-escalation phase I clinical study, we administered PCI with gemcitabine in patients with perihilar CCA (n = 16) to establish a safe and tolerable fimaporfin dose and to get early signals of efficacy. The patients enrolled in the study had tumors in which the whole length of the tumor could be illuminated from the inside of the bile duct, using an optical fiber inserted via an endoscope (Fig. 1). Fimaporfin was administered intravenously at day 0; gemcitabine (i.v.) and intraluminal biliary endoscopic laser light application on day 4; followed by standard gemcitabine/cisplatin chemotherapy. RESULTS: Preclinical experiments showed that PCI enhanced the effect of gemcitabine. In patients with CCA, PCI with gemcitabine was well tolerated with no dose-limiting toxicities, and no unexpected safety signals. Disease control was achieved in 10 of 11 evaluable patients, with a clearly superior effect in the two highest dose groups. The objective response rate (ORR) was 42%, including two complete responses, while ORR at the highest dose was 60%. Progression-free survival at 6 months was 75%, and median overall survival (mOS) was 15.4 months, with 22.8 months at the highest fimaporfin dose. CONCLUSION: Photochemical internalization with gemcitabine was found to be safe and resulted in encouraging response and survival rates in patients with unresectable perihilar CCA.


Subject(s)
Cholangiocarcinoma , Deoxycytidine , Photochemotherapy , Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/pathology , Deoxycytidine/adverse effects , Deoxycytidine/analogs & derivatives , Humans , Photochemotherapy/adverse effects , Photochemotherapy/methods , Gemcitabine
3.
Front Immunol ; 13: 815609, 2022.
Article in English | MEDLINE | ID: mdl-35173729

ABSTRACT

Conventional vaccines are very efficient in the prevention of bacterial infections caused by extracellular pathogens due to effective stimulation of pathogen-specific antibodies. In contrast, considering that intracellular surveillance by antibodies is not possible, they are typically less effective in preventing or treating infections caused by intracellular pathogens such as Mycobacterium tuberculosis. The objective of the current study was to use so-called photochemical internalization (PCI) to deliver a live bacterial vaccine to the cytosol of antigen-presenting cells (APCs) for the purpose of stimulating major histocompatibility complex (MHC) I-restricted CD8 T-cell responses. For this purpose, Mycobacterium bovis BCG (BCG) was combined with the photosensitiser tetraphenyl chlorine disulfonate (TPCS2a) and injected intradermally into mice. TPCS2a was then activated by illumination of the injection site with light of defined energy. Antigen-specific CD4 and CD8 T-cell responses were monitored in blood, spleen, and lymph nodes at different time points thereafter using flow cytometry, ELISA and ELISPOT. Finally, APCs were infected and PCI-treated in vitro for analysis of their activation of T cells in vitro or in vivo after autologous vaccination of mice. Combination of BCG with PCI induced stronger BCG-specific CD4 and CD8 T-cell responses than treatment with BCG only or with BCG and TPCS2a without light. The overall T-cell responses were multifunctional as characterized by the production of IFN-γ, TNF-α, IL-2 and IL-17. Importantly, PCI induced cross-presentation of BCG proteins for stimulation of antigen-specific CD8 T-cells that were particularly producing IFN-γ and TNF-α. PCI further facilitated antigen presentation by causing up-regulation of MHC and co-stimulatory proteins on the surface of APCs as well as their production of TNF-α and IL-1ß in vivo. Furthermore, PCI-based vaccination also caused local inflammation at the site of vaccination, showing strong infiltration of immune cells, which could contribute to the stimulation of antigen-specific immune responses. This study is the first to demonstrate that a live microbial vaccine can be combined with a photochemical compound and light for cross presentation of antigens to CD8 T cells. Moreover, the results revealed that PCI treatment strongly improved the immunogenicity of M. bovis BCG.


Subject(s)
BCG Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Lung/immunology , Animals , Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , BCG Vaccine/administration & dosage , Cross-Priming , Female , Inflammation/immunology , Injections, Intradermal , Interferon-gamma/biosynthesis , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mycobacterium bovis/immunology , Photosensitizing Agents/administration & dosage , Tumor Necrosis Factor-alpha/biosynthesis , Vaccination/methods
4.
Photodiagnosis Photodyn Ther ; 36: 102528, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34509683

ABSTRACT

A 77-year-old Caucasian male was diagnosed with squamous cell cancer of the right ear. The patient elected to take part in the first-in-man phase I TPCS2a based bleomycin photochemical internalization (PCI). On Day 0, The patient received the photosensitiser [Amphinex (TPCS2a)], by slow intravenous injection. Four days later, surface illumination based (PCI) was implemented 3 h after the slow infusion of Bleomycin. Four weeks following the infusion of the photosensitiser, the cancerous area turned into black rigid mass with clear demarcation from the macroscopically normal skin. The size of the treated area has been substantially reduced. Histopathologic assessment of the excised necrotic mass revealed no viable tumour and the excised margins (PCI-treated margins) were tumour-free. This case was a clear indication that PCI is a clinically relevant technique that has potential in the treatment of such cancers to avoid radical intervention.


Subject(s)
Carcinoma, Squamous Cell , Photochemotherapy , Aged , Bleomycin , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Humans , Male , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use
5.
J Control Release ; 332: 96-108, 2021 04 10.
Article in English | MEDLINE | ID: mdl-33609623

ABSTRACT

Antigen cross-presentation to cytotoxic CD8+ T cells is crucial for the induction of anti-tumor and anti-viral immune responses. Recently, co-encapsulation of photosensitizers and antigens into microspheres and subsequent photochemical internalization (PCI) of antigens in antigen presenting cells has emerged as a promising new strategy for inducing antigen-specific CD8+ T cell responses in vitro and in vivo. However, the exact cellular mechanisms have hardly been investigated in vivo, i.e., which cell types take up antigen-loaded microspheres at the site of injection, or in which secondary lymphoid organ does T cell priming occur? We used spray-dried poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with ovalbumin and the photosensitizer tetraphenyl chlorine disulfonate (TPCS2a) to investigate these processes in vivo. Intravital microscopy and flow cytometric analysis of the murine ear skin revealed that dendritic cells (DCs) take up PLGA microspheres in peripheral tissues. Illumination then caused photoactivation of TPCS2a and induced local tissue inflammation that enhanced CCR7-dependent migration of microsphere-containing DCs to tissue-draining lymph nodes (LNs), i.e., the site of CD8+ T cell priming. The results contribute to a better understanding of the functional mechanism of PCI-mediated vaccination and highlight the importance of an active transport of vaccine microspheres by antigen presenting cells to draining LNs.


Subject(s)
Antigens , CD8-Positive T-Lymphocytes , Animals , Dendritic Cells , Lymph Nodes , Mice , Mice, Inbred C57BL , Ovalbumin , Receptors, CCR7
6.
Biomacromolecules ; 21(4): 1489-1498, 2020 04 13.
Article in English | MEDLINE | ID: mdl-32092254

ABSTRACT

In this study we have developed biodegradable polymeric nanoparticles (NPs) containing the cytostatic drugs mertansine (MRT) or cabazitaxel (CBZ). The NPs are based on chitosan (CS) conjugate polymers synthesized with different amounts of the photosensitizer tetraphenylchlorin (TPC). These TPC-CS NPs have high loading capacity and strong drug retention due to π-π stacking interactions between the drugs and the aromatic photosensitizer groups of the polymers. CS polymers with 10% of the side chains containing TPC were found to be optimal in terms of drug loading capacity and NP stability. The TPC-CS NPs loaded with MRT or CBZ displayed higher cytotoxicity than the free form of these drugs in the breast cancer cell lines MDA-MB-231 and MDA-MB-468. Furthermore, light-induced photochemical activation of the NPs elicited a strong photodynamic therapy effect on these breast cancer cells. Biodistribution studies in mice showed that most of the TPC-CS NPs accumulated in liver and lungs, but they were also found to be localized in tumors derived from HCT-116 cells. These data suggest that the drug-loaded TPC-CS NPs have a potential in combinatory anticancer therapy and as contrast agents.


Subject(s)
Chitosan , Nanoparticles , Neoplasms , Pharmaceutical Preparations , Photochemotherapy , Animals , Drug Carriers , Mice , Neoplasms/drug therapy , Photosensitizing Agents , Tissue Distribution
7.
J Clin Med ; 9(2)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32075165

ABSTRACT

Photochemical internalisation (PCI) is a unique intervention which involves the release of endocytosed macromolecules into the cytoplasmic matrix. PCI is based on the use of photosensitizers placed in endocytic vesicles that, following light activation, lead to rupture of the endocytic vesicles and the release of the macromolecules into the cytoplasmic matrix. This technology has been shown to improve the biological activity of a number of macromolecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins (RIPs), gene-encoding plasmids, adenovirus and oligonucleotides and certain chemotherapeutics, such as bleomycin. This new intervention has also been found appealing for intracellular delivery of drugs incorporated into nanocarriers and for cancer vaccination. PCI is currently being evaluated in clinical trials. Data from the first-in-human phase I clinical trial as well as an update on the development of the PCI technology towards clinical practice is presented here.

8.
Cancers (Basel) ; 12(1)2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31936595

ABSTRACT

Photochemical internalization (PCI) is a further development of photodynamic therapy (PDT). In this report, we describe PCI as a potential tool for cellular internalization of chemotherapeutic agents or antigens and systematically review the ongoing research. Eighteen published papers described the pre-clinical and clinical developments of PCI-mediated delivery of chemotherapeutic agents or antigens. The studies were screened against pre-defined eligibility criteria. Pre-clinical studies suggest that PCI can be effectively used to deliver chemotherapeutic agents to the cytosol of tumor cells and, thereby, improve treatment efficacy. One Phase-I clinical trial has been conducted, and it demonstrated that PCI-mediated bleomycin treatment was safe and identified tolerable doses of the photosensitizer disulfonated tetraphenyl chlorin (TPCS2a). Likewise, PCI was pre-clinically shown to mediate major histocompatibility complex (MHC) class I antigen presentation and generation of tumor-specific cytotoxic CD8+ T-lymphocytes (CTL) and cancer remission. A first clinical Phase I trial with the photosensitizer TPCS2a combined with human papilloma virus antigen (HPV) was recently completed and results are expected in 2020. Hence, photosensitizers and light can be used to mediate cytosolic delivery of endocytosed chemotherapeutics or antigens. While the therapeutic potential in cancer has been clearly demonstrated pre-clinically, further clinical trials are needed to reveal the true translational potential of PCI in humans.

9.
Photochem Photobiol ; 96(3): 680-683, 2020 05.
Article in English | MEDLINE | ID: mdl-31901218

ABSTRACT

Photochemical internalization (PCI) depends on the delivery of sublethal photodynamic reaction to facilitate the work of a chemotherapeutic agent. We discuss our experience in managing a patient with extensive squamous cell carcinoma of the right face and scalp under the TPCS2a -based bleomycin PCI treatment protocol. In this case, an 84-year-old Caucasian received 0.25 mg kg-1 of TPCS2a (Amphinex® , PCI Biotech AS, Oslo, Norway). Surface illumination photochemical internalization was carried out after 4 days, which was preceded by the chemotherapeutic agent infusion (Bleomycin). After one week from the illumination time, tissue necrosis was evident and tumor shrinkage was most noticeable at day 14 postillumination. Follow-up at 6 weeks continued to show tissue healing and regeneration with no clinical evidence of recurrence. Multiple surgical biopsies were taken at 1 and 3 months postillumination and found to be tumor free. PCI's depth of effect has been very significant with negligible damage to the collateral tissues. This technology has a role in interventional oncology especially when managing challenging cases.


Subject(s)
Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Skin Neoplasms/drug therapy , Squamous Cell Carcinoma of Head and Neck/drug therapy , Aged , Aged, 80 and over , Antibiotics, Antineoplastic/therapeutic use , Bleomycin/therapeutic use , Face , Humans , Male , Remission Induction , Scalp , Treatment Outcome
10.
Front Immunol ; 11: 576756, 2020.
Article in English | MEDLINE | ID: mdl-33488576

ABSTRACT

Background and Aims: Photochemical internalization (PCI) is a technology for inducing release of endocytosed antigens into the cell cytosol via a light-induced process. Preclinical experiments have shown that PCI improves MHC class I antigen presentation, resulting in strongly enhanced CD8+ T-cell responses to polypeptide antigens. In PCI vaccination a mixture of the photosensitizing compound fimaporfin, vaccine antigens, and an adjuvant is administered intradermally followed by illumination of the vaccination site. This work describes an open label, phase I study in healthy volunteers, to assess the safety, tolerability, and immune response to PCI vaccination in combination with the adjuvant poly-ICLC (Hiltonol) (ClinicalTrials.gov Identifier: NCT02947854). Methods: The primary objective of the study was to assess the safety and local tolerance of PCI mediated vaccination, and to identify a safe fimaporfin dose for later clinical studies. A secondary objective was to analyze the immunological responses to the vaccination. Each subject received 3 doses of HPV16 E7 peptide antigens and two doses of Keyhole Limpet Hemocyanin (KLH) protein. A control group received Hiltonol and vaccine antigens only, whereas the PCI groups in addition received fimaporfin + light. Local and systemic adverse effects were assessed by standard criteria, and cellular and humoral immune responses were analyzed by ELISpot, flow cytometry, and ELISA assays. Results: 96 healthy volunteers were vaccinated with fimaporfin doses of 0.75-50 µg. Doses below 17.5 µg were safe and tolerable, higher doses exhibited local tolerability issues in some study subjects, mainly erythema, and pain during illumination. There were few, and only mild and expected systemic adverse events. The employment of PCI increased the number of subjects exhibiting a T-cell response to the HPV peptide vaccine about 10-fold over what was achieved with the antigen/Hiltonol combination without PCI. Moreover, the use of PCI seemed to result in a more consistent and multifunctional CD8+ T-cell response. An enhancement of the humoral immune response to KLH vaccination was also observed. Conclusions: Using PCI in combination with Hiltonol for intradermal vaccination is safe at fimaporfin doses below 17.5 µg, and gives encouraging immune responses to peptide and protein based vaccination.


Subject(s)
Human papillomavirus 16/physiology , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Peptides/immunology , Photosensitizing Agents/immunology , T-Lymphocytes/immunology , Vaccination/methods , Adult , Cells, Cultured , Female , Healthy Volunteers , Humans , Immunity, Cellular , Lighting , Male , Middle Aged , Photochemical Processes , Vaccines, Subunit , Young Adult
11.
Front Immunol ; 10: 1548, 2019.
Article in English | MEDLINE | ID: mdl-31333674

ABSTRACT

Cytotoxic T lymphocytes (CTLs) are key players in fighting cancer, and their induction is a major focus in the design of therapeutic vaccines. Yet, therapeutic vaccine efficacy is limited, in part due to the suboptimal vaccine processing by antigen-presenting cells (APCs). Such processing typically takes place via the MHC class II pathway for CD4 T-cell activation and MHC class I pathway for activation of CD8 CTLs. We show that a combination of skin photochemical treatment and immunization, so-called photochemical internalization (PCI) facilitated CTL activation due to the photochemical adjuvant effect induced by photosensitizer, oxygen, and light. Mice were immunized intradermally with antigen and photosensitizer, followed by controlled light exposure. PCI-treated mice showed strong activation of CD8 T cells, with improved IFN-γ production and cytotoxicity, as compared to mice immunized without parallel PCI treatment. Surprisingly, the CD8 T-cell effector functions were not impaired in MHC class II- or CD4 T-cell-deficient mice. Moreover, PCI-based vaccination caused tumor regression independent of MHC class II or CD4 T cells presence in melanoma bearing mice. Together, the data demonstrate that PCI can act as a powerful adjuvant in cancer vaccines, even in hosts with impaired T-helper functions.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Neoplasms/immunology , Photosensitivity Disorders/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cancer Vaccines/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic/immunology , Female , Immunization/methods , Interferon-gamma/immunology , Lymphocyte Activation/immunology , Melanoma/immunology , Mice , Mice, Inbred C57BL , Photosensitizing Agents/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccination/methods
13.
J Control Release ; 283: 214-222, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29883696

ABSTRACT

Bacterial pathogens such as Staphylococcus aureus and Staphylococcus epidermidis can survive in different types of cells including professional phagocytes, causing intracellular infections. Antibiotic treatment of intracellular infections is often unsuccessful due to the low efficacy of most antibiotics inside cells. Therefore, novel techniques which can improve intracellular activity of antibiotics are urgently needed. We aimed to use photochemical internalization (PCI) to enhance cytosolic release of antibiotics from endocytic vesicles after internalization. Our results show that PCI indeed caused cytosolic release of gentamicin and significantly increased its efficacy against S. epidermidis in vitro in mouse macrophages. Upon illumination for 15 min, the killing of intracellular S. epidermidis in RAW 264.7 cells by 10 or 30 µg/ml gentamicin was increased to 1 or 3 CFU log, respectively, owing to the use of PCI, whereas no killing by gentamicin only without PCI was observed. Moreover, survival of S. aureus-infected zebrafish embryos was significantly improved by treatment with PCI-gentamicin. PCI improved the therapeutic efficacy of gentamicin at a dose of 0.1 ng per embryo to a level similar to that of a dose of 0.4 ng per embryo, indicating that PCI can lower the antibiotic dose required for treating (intracellular) staphylococcal infection. Thus, the present study shows that PCI is a promising novel approach to enhance the intracellular efficacy of antibiotics via cytosolic release, allowing them to reach intracellular bacteria. This will expand their therapeutic window and will increase the numbers of antibiotics which can be used for treatment of intracellular infections.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Cytosol/metabolism , Gentamicins/administration & dosage , Light , Photosensitizing Agents/administration & dosage , Porphyrins/administration & dosage , Staphylococcal Infections/drug therapy , Animals , Embryo, Nonmammalian , Mice , RAW 264.7 Cells , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Zebrafish
14.
Photodiagnosis Photodyn Ther ; 23: 218-220, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29936141

ABSTRACT

BACKGROUND: Amylin and oligomers formed from amylin are implicated in demise of beta cells in type 2 diabetes. However, whether putative toxicity is exerted intra or extracellularly is unclear. Use of photochemical internalization (PCI) technique may give clues for impact of intracellular toxicity. AIM: (a) To optimize the concentration and exposure set up of the photosensitizing compound meso-disulfonated tetraphenyl chlorin TPCS2a (Amphinex®) for use in insulin producing beta cells and (b) to utilize the photosensitizing technique to probe for intracellular effects in beta cells by amylin. MATERIALS AND METHODS: The titration of TPCS2a and blue light exposure was evaluated by MTT assay. The insulin producing INS-1 832/13 beta cells were incubated with the photosensitizing agent TPCS2a prior to exposure of amylin. Viability and function were further evaluated by standard biochemical techniques. RESULTS: A protocol was developed for use in INS-1 832/13 cells in which the optimal concentration of TPCS2a was found to be 4ng/ml. Using this protocol human amylin (10 µM, 8 h) in combination with TPCS2a (4 ng/ml, 18 h) and blue light exposure (60 s) exerted toxic effects above those by TPCS2a and illumination alone as measured by MTT (15 ±â€¯3.6%, n = 6, p < 0.007) for effect of amylin exposure. On the other hand, rat amylin (which does not form oligomers) had no effect. Insulin secretion was non-significantly reduced by the combination of human amylin with TPCS2a and illumination compared to TPCS2a and illumination alone. Cellular insulin content was not affected, nor were measured parameters of apoptosis and necrosis. CONCLUSION: PCI technology could be a useful tool to induce endosomal rupture in clonal beta cells. The present results using PCI are compatible with intracellular negative effects following exposure to amylin.


Subject(s)
Insulin-Secreting Cells/drug effects , Islet Amyloid Polypeptide/pharmacology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Animals , Cell Survival , Diabetes Mellitus, Type 2 , Dose-Response Relationship, Drug , Insulin/biosynthesis , Rats
15.
Front Immunol ; 9: 650, 2018.
Article in English | MEDLINE | ID: mdl-29670624

ABSTRACT

Effective priming and activation of tumor-specific CD8+ cytotoxic T lymphocytes (CTLs) is crucial for realizing the potential of therapeutic cancer vaccination. This requires cytosolic antigens that feed into the MHC class I presentation pathway, which is not efficiently achieved with most current vaccination technologies. Photochemical internalization (PCI) provides an emerging technology to route endocytosed material to the cytosol of cells, based on light-induced disruption of endosomal membranes using a photosensitizing compound. Here, we investigated the potential of PCI as a novel, minimally invasive, and well-tolerated vaccination technology to induce priming of cancer-specific CTL responses to peptide antigens. We show that PCI effectively promotes delivery of peptide antigens to the cytosol of antigen-presenting cells (APCs) in vitro. This resulted in a 30-fold increase in MHC class I/peptide complex formation and surface presentation, and a subsequent 30- to 100-fold more efficient activation of antigen-specific CTLs compared to using the peptide alone. The effect was found to be highly dependent on the dose of the PCI treatment, where optimal doses promoted maturation of immature dendritic cells, thus also providing an adjuvant effect. The effect of PCI was confirmed in vivo by the successful induction of antigen-specific CTL responses to cancer antigens in C57BL/6 mice following intradermal peptide vaccination using PCI technology. We thus show new and strong evidence that PCI technology holds great potential as a novel strategy for improving the outcome of peptide vaccines aimed at triggering cancer-specific CD8+ CTL responses.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Immunotherapy/methods , Neoplasms/therapy , Vaccination/methods , Animals , Antigen Presentation , Antigens, Neoplasm/immunology , Cytotoxicity, Immunologic , Endocytosis , Humans , Injections, Intradermal , Mice , Neoplasms/immunology , Peptides/immunology , Photochemical Processes
16.
J Exp Clin Cancer Res ; 36(1): 187, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258566

ABSTRACT

BACKGROUND: Development of resistance to 5-fluorouracil (5-FU) is a major problem in treatment of various cancers including pancreatic cancer. In this study, we reveal important resistance mechanisms and photochemical strategies to overcome 5-FU resistance in pancreatic adenocarcinoma. METHODS: 5-FU resistant (5-FUR), epithelial-to-mesenchymal-like sub-clones of the wild type pancreatic cancer cell line Panc03.27 were previously generated in our lab. We investigated the cytotoxic effect of the endosomal/lysosomal-localizing photosensitizer TPCS2a (fimaporfin) combined with light (photochemical treatment, PCT) using MTS viability assay, and used fluorescence microscopy to show localization of TPCS2a and to investigate the effect of photodamage of lysosomes. Flow cytometric analysis was performed to investigate uptake of photosensitizer and to assess intracellular ROS levels. Expression and localization of LAMP1 was assessed using RT-qPCR, western blotting, and structured illumination microscopy. MTS viability assay was used to assess the effect of combinations of 5-FU, chloroquine (CQ), and photochemical treatment. Expression of CD105 was investigated using RT-qPCR, western blotting, flow cytometry, and fluorescence microscopy, and co-localization of TPCS2a and anti-CD105-saporin was assessed using microscopy. Lastly, the MTS assay was used to investigate cytotoxic effects of photochemical internalization (PCI) of the anti-CD105-immunotoxin. RESULTS: The 5-FUR cell lines display hypersensitivity to PCT, which was linked to increased uptake of TPCS2a, altered lysosomal distribution, lysosomal photodamage and increased expression of the lysosomal marker LAMP-1 in the 5-FUR cells. We show that inhibition of autophagy induced by either chloroquine or lysosomal photodamage increases the sensitivity to 5-FU in the resistant cells. The three 5-FUR sub-clones overexpress Endoglin (CD105). Treatment with the immunotoxin anti-CD105-saporin alone significantly reduced the viability of the CD105-expressing 5-FUR cells, whereas little effect was seen in the CD105-negative non-resistant parental cancer cell lines. Strikingly, using the intracellular drug delivery method photochemical internalization (PCI) by combining light-controlled activation of the TPCS2a with nanomolar levels of CD105-saporin resulted in strong cytotoxic effects in the 5-FUR cell population. CONCLUSION: Our findings suggested that autophagy is an important resistance mechanism against the chemotherapeutic drug 5-FU in pancreatic cancer cells, and that inhibition of the autophagy process, either by CQ or lysosomal photodamage, can contribute to increased sensitivity to 5-FU. For the first time, we demonstrate the promise of PCI-based targeting of CD105 in site-specific elimination of 5-FU resistant pancreatic cancer cells in vitro. In conclusion, PCI-based targeting of CD105 may represent a potent anticancer strategy and should be further evaluated in pre-clinical models.


Subject(s)
Adenocarcinoma/pathology , Immunotoxins/pharmacology , Pancreatic Neoplasms/pathology , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology , Antineoplastic Agents , Autophagy/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Endoglin/antagonists & inhibitors , Epithelial-Mesenchymal Transition , Fluorouracil , Humans , Phototherapy/methods , Ribosome Inactivating Proteins, Type 1/pharmacology , Saporins
17.
J Exp Ther Oncol ; 12(2): 113-120, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29161778

ABSTRACT

INTRODUCTION: Photochemical Internalization is a novel drug delivery technology for cancer treatment based on the principle of Photodynamic Treatment. Using a photosensitizer that locates in endocytic vesicles membranes of tumor cells, Photochemical internalization enables cytosolic release of endocytosed antitumor agents in a site-specific manner. The purpose of the present in-vitro study was to explore whether Photochemical Internalization is able to enhance the efficacy of Ranpirnase, a cytotoxic amphibian ribonuclease, for eradication of squamous cell carcinoma of the head and neck. METHODS: Cell viability was measured in 8 primary human cell lines of squamous cell carcinoma of the head and neck after treatment with Ranpirnase and Photochemical Internalization. For Photochemical Internalization the photosensitizer disulfonated tetraphenyl porphine was incubated with tumor cells followed by exposure to blue light (435 nm). RESULTS: Our study demonstrates significant enhancement of antitumor activity of Ranpirnase by Photochemical Internalization. Treatment responses were heterogeneous between the primary cancer cell lines. Combining Photochemical Internalization with Ranpirnase resulted in 4.6 to 1,940-fold increased cytotoxicity when compared with the ribonuclease alone (P < 0.05). CONCLUSION: Cytotoxicity of Ranpirnase can be markedly enhanced by Photochemical Internalization in squamous cell carcinoma of the head and neck.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Head and Neck Neoplasms/drug therapy , Photochemotherapy/methods , Ribonucleases/therapeutic use , Cell Line, Tumor , Drug Delivery Systems , Humans , Photochemistry , Squamous Cell Carcinoma of Head and Neck
18.
Photochem Photobiol Sci ; 16(11): 1664-1676, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-28972608

ABSTRACT

The possibility of using photochemical internalization (PCI) to enhance the effects of the cytotoxic drug bleomycin is investigated, together with photophysical determination and outlines of a possible treatment for intravesical therapy of bladder cancer. In vitro experiments indicated that the employment of PCI technology using the novel photosensitizer TPCS2a® can enhance the cytotoxic effect of bleomycin in bladder cancer cells. Furthermore, experiments in an orthotopic in vivo bladder cancer model show an effective reduction in both the necrotic area and the bladder weight after TPCS2a based photodynamic therapy (PDT). The tumor selectivity and PDT effects may be sufficient to destroy tumors without damaging the detrusor muscle layer. Our results present a possible new treatment strategy for non-muscle invasive bladder cancer, with the intravesical instillation of the photosensitizer and bleomycin followed by illumination through an optic fiber by using a catheter.


Subject(s)
Antineoplastic Agents/pharmacology , Bleomycin/pharmacology , Disease Models, Animal , Light , Photosensitizing Agents/pharmacology , Urinary Bladder Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Bleomycin/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Female , Photochemical Processes , Photosensitizing Agents/chemistry , Rats , Rats, Inbred F344 , Tumor Cells, Cultured , Urinary Bladder Neoplasms/pathology
19.
Biochem Pharmacol ; 144: 63-77, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28784290

ABSTRACT

Here we report on the induction of resistance to photodynamic therapy (PDT) in the ABCG2-high human breast cancer cell line MA11 after repetitive PDT, using either Pheophorbide A (PhA) or di-sulphonated meso-tetraphenylchlorin (TPCS2a) as photosensitizer. Resistance to PhA-PDT was associated with enhanced expression of the efflux pump ABCG2. TPCS2a-PDT-resistance was neither found to correspond with lower TPCS2a-accumulation nor reduced generation of reactive oxygen species (ROS). Cross-resistance to chemotherapy (doxorubicin) or radiotherapy was not observed. TPCS2a-PDT-resistant cells acquired a higher proliferation capacity and an enhanced expression of EGFR and ERK1/2. p38 MAPK was found to be a death-signalling pathway in the MA11 cells post TPCS2a-PDT, contrasting the MA11/TR cells in which PDT generated a sustained phosphorylation of p38 that had lost its death-mediated signalling, and an abrogated activation of its downstream effector MAPKAPK2. No difference in apoptosis, necrosis or autophagy responses was found between the treated cell lines. Development of TPCS2a-PDT resistance in the MDA-MB-231 cell line was also established, however, p38 MAPK did not play a role in the PDT-resistance. MCF-7 cells did not develop TPCS2a-PDT-resistance. Photochemical internalisation (PCI) of 1 pM of EGF-saporin induced equal strong cytotoxicity in both MA11 and MA11/TR cells. In conclusion, loss of p38 MAPK-inducing death signalling is the main mechanism of resistance to TPCS2a-PDT in the MA11/TR cell line. This work provides mechanistic knowledge of intrinsic and acquired PDT-resistance which is dependent on choice of photosensitizer, and suggests PCI as a rational therapeutic intervention for the elimination of PDT-resistant cells.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/physiology , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , p38 Mitogen-Activated Protein Kinases/biosynthesis , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Chlorophyll/analogs & derivatives , Chlorophyll/pharmacology , Female , Humans , MCF-7 Cells , Porphyrins/pharmacology
20.
Biomacromolecules ; 18(4): 1108-1126, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28245649

ABSTRACT

Four amphiphilic covalently linked meso-tetraphenylchlorin-chitosan nanoconjugates were synthesized and evaluated for use in photochemical internalization (PCI) in vitro and in vivo. The synthetic protocol for the preparation of two different hydrophobic chlorin photosensitizers, 5-(4-aminophenyl)-10,15,20-triphenylchlorin and 5-(4-carboxyphenyl)-10,15,20-triphenylchlorin, was optimized. These monofunctional photosensitizers were covalently attached to carrier chitosan via silyl-protected 3,6-di-O-tert-butyldimethylsilyl-chitosan (Di-TBDMS-chitosan) with 0.10 degree of substitution per glucosamine (DS). Hydrophilic moieties such as trimethylamine and/or 1-methylpiperazine were incorporated with 0.9 DS to give fully water-soluble conjugates after removal of the TBDMS groups. A dynamic light scattering (DLS) study confirmed the formation of nanoparticles with a 140-200 nm diameter. These nanoconjugates could be activated at 650 nm (red region) light, with a fluorescence quantum yield (ΦF) of 0.43-0.45, and are thus suitable candidates for use in PCI. These nanoconjugates were taken up and localized in the endocytic vesicles of HCT116/LUC human colon carcinoma cells, and upon illumination they substantially enhanced plasmid DNA transfection. The nanoconjugates were also evaluated in preliminary in vivo experiments in tumor-bearing mice, showing that the nanoconjugates could induce a strong photodynamic therapy (PDT) and also PCI effects in treatment with bleomycin.


Subject(s)
Chitosan/chemistry , Endosomes/drug effects , Nanoconjugates/chemistry , Photosensitizing Agents/chemistry , Animals , Bleomycin , Female , HCT116 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Mice , Mice, Nude , Photochemistry , Piperazines/chemistry , Polymers/chemistry , Porphyrins/chemistry , Spectroscopy, Fourier Transform Infrared , Transfection , Transport Vesicles/drug effects , Transport Vesicles/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...